|
Почему не летит "Булава"
опубликовал
milstar
5774 дня 20 часов 14 минут назад
Разработчик новой системы оружия игнорирует технологические заделы и опыт морского ракетостроения
2009-01-16 / Олег Сергеев - кандидат технических наук, полковник, ветеран РВСН, выпускник Высшего военно-морского училища инженеров оружия.
Почему не летит "Булава"
Разработчик новой системы оружия игнорирует технологические заделы и опыт морского ракетостроения
2009-01-16 / Олег Сергеев - кандидат технических наук, полковник, ветеран РВСН, выпускник Высшего военно-морского училища инженеров оружия.
мит, булава, испытания / Один из пусков
Один из пусков "Булавы".
Фото из книги "Подводные силы России"
Неудачи головного разработчика ракетного комплекса морского базирования «Булава» – Московского института теплотехники (МИТ) – неслучайны. Они свидетельствуют об ущербности концепции создания и испытаний новой баллистической ракеты для атомных подводных крейсеров, призванной заменить исчерпавший свой ресурс «Тайфун» (РСМ-52), а в дальнейшем – и «Синеву» (РСМ-54), и стать основой морской компоненты стратегических ядерных сил России. Ни в одном из испытательных пусков «Булавы» ее боевые блоки целей на Камчатке не достигли из-за отклонений изделия от расчетной траектории полета. Закончился аварией и десятый «зачетный» пуск этой ракеты 23 декабря 2008 года с борта РПКСН «Дмитрий Донской».
ЧТО НА СУШЕ ХОРОШО, ПРОТИВОПОКАЗАНО В МОРЕ
В начале 1980-х годов только два из 13 испытаний ракеты РСМ-52, производившихся на головной атомной подводной лодке «Тайфун», были неуспешными. Хотя, как и «Булава», РСМ-52 – это трехступенчатая БРПЛ на твердом топливе с головной частью, оснащенной 10 боевыми блоками индивидуального наведения на цель и комплексом средств преодоления ПРО.
Обещанная МИТом – традиционным разработчиком наземных подвижных ракетных комплексов – модернизация ракеты «Тополь» под БРПЛ «Булава» означала создание на голом месте, без обладания опытом морского ракетостроения, новой системы оружия.
Напомним, что в отличие от единичного, демонстрационного образца система оружия существует десятилетия за счет инноваций, заложенных, к примеру, в автомат Калашникова АК-47, танк Т-34, истребитель МиГ-15, ракетные комплексы Р-12 (8К63), «Темп-С» или в отечественную межконтинентальную БРПЛ РСМ-40. Хорошо известны и американские ракетные системы оружия наземного («Минитмен») и морского («Трайдент») базирования, а также их разработчики – корпорации «Боинг» и «Локхид».
Следует отметить, что так называемые мобильные наземные, грунтовые или железнодорожные ракетные комплексы (ПГРК и ПЖРК) в отличие от комплексов морского базирования подвижны лишь условно. Их пусковая установка при подготовке к выстрелу вывешивается и строго горизонтируется гидравлическими опорами в геодезически привязанном с особой точностью месте старта. Для БРПЛ эти условия могут быть созданы при швартовке подводного ракетоносца к стенке в месте базирования.
В море стратегический подводный ракетоносец находится в условиях «гидрокосмоса», когда ошибки в определении места и курса неизбежны. При этом точность выработки данных для стрельбы зависит от времени нахождения атомной субмарины на заданном курсе при минимальных отклонениях по скорости, глубине, крену и дифференту.
Будущий облик ракетного комплекса отражается в программе испытаний, которая подтверждает его технические характеристики и замысел конструктора. Качество летных испытаний – это прогноз надежности изделия на долгие годы эксплуатации.
Признание главным конструктором «Булавы» невозможности спрогнозировать характер нештатной ситуации и ссылки на абсолютно случайный характер процессов говорит о несоответствии программы испытаний условиям функционирования изделия.
Летные испытания «Булавы» характеризуют ее как стационарную стартовую платформу, а не подвижную – РПКСН, по системе управления, модели и параметрам полета. Об этом говорит ненадежность попадания в «трубку траекторий» – причине характерных для «Булавы» аварий на этапе разделения 1-й, 2-й и 3-й ступеней ракеты.
«МУХИ» И «КОТЛЕТЫ» В ТОЧНОСТИ СТРЕЛЬБЫ РПКСН
Главная целевая функция БРПЛ – точность стрельбы – подчиняет себе все тактико-технические элементы атомной подлодки, включая навигационный комплекс (НК), математическую модель (фильтр Калмана), систему выброса (пороховой аккумулятор давлении – ПАД – или парогазогенератор, обтюрацию потока газов, мембрану, гидродинамическую защиту ракеты). А также подготовленные в навигационном отношении районы боевого патрулирования. Где тщательно изучены ориентиры на морском дне и влияющие на точность инерциальных систем гравитационные аномалии.
Ошибки НК ракетных подводных лодок имеют отвратительное свойство накопления в бортовых системах наведения БРПЛ – инструменте минимизации суммарной ошибки стрельбы и повышения инновационного потенциала системы оружия в целом.
Чтобы отделить мух от котлет и понять природу явлений, воспроизвести их в наземных условиях и дать прогноз успешности доработок, требуется добыть не зашумленную информацию при пусках БРПЛ с наземного стенда, без влияния отклонений подвижной платформы – атомной субмарины. Именно поэтому данный этап проводился и американцами при испытаниях ракет «Трайдент-1» и «Трайдент-2». Обещания МИТа, что «Булава» превзойдет «Трайдент-2», минуя наземные стендовые испытания, выглядят сегодня профанацией и авантюризмом.
При отставании отечественного приборостроения, электроники и программного обеспечения в ходе отработки комплексов межконтинентальных БРПЛ испытания с наземного стенда были объективно необходимы. Так, Государственный ракетный центр (ГРЦ) имени В.П.Макеева с наземного стенда проводил от 16 до 20 пусков на различные дальности. Результаты этих испытаний обеспечили модернизацию ракет для полета по настильным траекториям, в том числе из районов высоких широт, поражения защищенных малоразмерных целей и повышения стойкости к поражающим факторам различной природы.
По завершении испытаний с наземного стенда осуществлялось до 18 пусков ракет в различном боевом оснащении с атомных подлодок из районов Белого, Баренцева и Норвежского морей.
Отказ МИТа от стендовых испытаний говорит об отсутствии в «Булаве» объектов для их проведения, повышающих надежность и точность разведения боевых блоков. Метод же проб и ошибок, представляемый как «статистические испытания», не результативен, даже если прибавить к 10 неудачным еще пять и более пусков ракет.
Известно, что бортовая система наведения первой межконтинентальной БРПЛ РСМ-40 включала азимутальную астрокоррекцию, которая обеспечивала требуемую точность стрельбы и при значительных ошибках НК в определении курса подводной лодки. На более совершенных ракетах (РСМ-50, РСМ-52 и РСМ-54) применялась полная астрокоррекция, учитывающая ошибки НК как в определении курса, так и места стреляющей субмарины. Ныне создатель данной системы и оптоэлектроники для космоса, авиации и ВМФ – ЦКБ «Геофизика» находится в состоянии банкротства.
Влияние на точность оказывает и устойчивость движения ракеты на подводном участке за счет работы маршевых жидкостных реактивных двигателей при «мокром» старте из затопленной водой ракетной шахты. В твердотопливной ракете, стартующей из «сухой» шахты при помощи ПАДа, применяется типично русское изобретение – устройство формирования каверны зарядами твердого топлива, создающими газоструйную защиту, которая снижает гидродинамические нагрузки на ракету.
В тяжелой БРПЛ РСМ-52 «Тайфун» это устройство совмещалось со специальной амортизационной ракетно-стартовой системой, фиксирующей и герметизирующей ракету в подвешенном состоянии в верхней части шахты. Отработка этой системы включала бросковые испытания полномасштабных макетов, а также подводные и надводные пуски 16 ракет (9 с плавстенда и 7 с экспериментальной подводной лодки).
Технологичность этой конструкции стала предметом шпионского скандала при попытке американцев узнать секрет влияния каверны на скорость торпеды «Шквал».
СЕКРЕТ ПОЛИШИНЕЛЯ
Контент-анализ весьма скудных официальных данных позволяет поставить диагноз детской болезни «Булавы». Главной причиной грандиозного провала явилось нежелание разработчика привлечь к созданию новой системы оружия технологические заделы и богатый отечественный и зарубежный опыт морского ракетостроения.
О том, что в «Тополе» отсутствуют модернизационные запасы и инновационная составляющая для прогресса БРПЛ, было известно не только независимым экспертам. Хорошо об этом знало и руководство МИТа, в кооперации с которым давно находится Свердловское НПО автоматики Н.А.Семихатова – создатель системы наведения для первого ПБРК «Темп-С» Московского института теплотехники и всех БРПЛ Виктора Макеева.
Наивно полагать, что специалисты МИТа не провели расчеты баллистики по Циолковскому и не установили факт: при мизерном забрасываемом весе изделия и при отсутствии надежной системы управления выполнить заданные требования по количеству, мощности, точности доставки к цели и способности к маневру боевых блоков нереально. Утопичен также и план Минобороны по вводу двух РПКСН с «Булавой» к 2012 году.
Без согласования программного продукта, расчетных и математических моделей «Тополя» с устройством формирования каверны, астрокорректором, системой ГЛОНАСС и с другими присущими межконтинентальным ракетам морского базирования элементами сотворение «Булавы» выглядит как попытка переделать автомобиль в самолет или паровоз в электровоз. В этих условиях руководство МИТа стремится продлить этот процесс на годы, избегая внедрять технологии, определяющие вектор развития морского ракетостроения.
Показательно отсутствие упоминаний о «Булаве» в статье «Надежность ядерного щита» директора и генерального конструктора МИТа Юрия Соломонова, где накануне трех судьбоносных пусков БРПЛ в 2008 году он предложил развернуть вместо МСЯС группировку РВСН подвижного наземного базирования со «значительной долей блоков (боевых. – О.С.)». Иначе – заменить РПКСН группировкой ПГРК условной мобильности.
Уже десятилетие «Булава» служит раздражителем умов ученых и профессионалов-ракетчиков. В последнее время проект весьма сомнительного свойства стал головной болью правительства РФ, Военно-промышленной комиссии и Главкомата ВМФ, куда пришло понимание: совершена ошибка, а это, по Талейрану, хуже, чем преступление.
Многомиллиардные затраты породили инерцию отрицания опасности проекта, который держится на амбициях загнавших себя в угол чиновников. Путем перевода решения технических проблем в плоскость популизма, замалчивания неудач они пытаются протолкнуть неработоспособную «Булаву» на вооружение и в серийное производство. Что отбрасывает морское ракетостроение на глубину в 30 лет, «иссушает» военный бюджет, оставляя отечественный ОПК у разбитого корыта.
|
|
Комментарии
|
|
добавил
milstar
5773 дня 20 часов 51 минуту назад
http://de.youtube.com/watch?v=6BCoBGdvyiQ&feature=related
|
|
|
добавил
milstar
5773 дня 20 часов 51 минуту назад
http://de.youtube.com/watch?v=i8hVbKtgNZI&feature=related
|
|
|
добавил
milstar
5773 дня 20 часов 53 минуты назад
http://de.youtube.com/watch?v=PnUiG9Nb1lI
|
|
|
добавил
milstar
5773 дня 20 часов 53 минуты назад
Отвечающий еще и за оборонно-промышленный комплекс, вице-премьер не забыл и другое свое любимое детище – морскую ракету «Булава». Вот уже десять лет пытаются довести ее до принятия на вооружение. Сейчас решено подключить к испытаниям Роскосмос. Очевидно, даже Сергей Иванов понял, что Московский институт теплотехники (МИТ), взваливший на себя тяжкую многомиллиардную (хоть в рублях, хоть в долларах) ношу созидания «Булавы», самостоятельно справиться с техническими проблемами не может.
«Считаю, что руководству Роскосмоса необходимо занять более активную позицию в отношении обеспечения летно-конструкторских испытаний и подготовки серийного производства ракетных комплексов стратегического назначения «Булава», – дал установку вице-премьер. Причину неудач с ракетой он увидел в том, что «недостаточное внимание уделяется наземной отработке изделий». В переводе на общедоступный язык это означает, испытывать надо сперва на наземных стендах, которых у МИТа нет. «Нередки случаи, когда реальные испытания заменяются математическими расчетами подтверждения соответствия изделия заданным техническим требованиям», – дал более подробные разъяснения Сергей Иванов. При этом подчеркнул, что испытания «Булавы» будут продолжены до принятия на вооружение. В общем, впереди годы напряженной работы
http://nvo.ng.ru/realty/2009-01-30/1_priznanie.html?mthree=2
|
|
|
добавил
milstar
5773 дня 20 часов 54 минуты назад
W stat'e wische iz NG
1. Следует отметить, что так называемые мобильные наземные, грунтовые или железнодорожные ракетные комплексы (ПГРК и ПЖРК) в отличие от комплексов морского базирования подвижны лишь условно. Их пусковая установка при подготовке к выстрелу вывешивается и строго горизонтируется гидравлическими опорами в геодезически привязанном с особой точностью месте старта. Для БРПЛ эти условия могут быть созданы при швартовке подводного ракетоносца к стенке в месте базирования
2. Известно, что бортовая система наведения первой межконтинентальной БРПЛ РСМ-40 включала азимутальную астрокоррекцию, которая обеспечивала требуемую точность стрельбы и при значительных ошибках НК в определении курса подводной лодки. На более совершенных ракетах (РСМ-50, РСМ-52 и РСМ-54) применялась полная астрокоррекция, учитывающая ошибки НК как в определении курса, так и места стреляющей субмарины. Ныне создатель данной системы и оптоэлектроники для космоса, авиации и ВМФ – ЦКБ «Геофизика» находится в состоянии банкротства.
... в отличие от комплексов морского базирования подвижны лишь условно
Nikto ne meschaet stawit' astrokorekziju na wse kompleksi ne morskogo bazirowanija
Ne wipolnajetsja yslowie polnoj awtonomnosti (kak i na morskix kompleksax) .
T..e. serija swetowix wspischek ot yadernix wzriwow yxudschit sootnoschenie singal/schum pri raspoznowanii zwezdi
No swetowaja wspischka kratkosrochna i ne zakriwaet wse nebo ,w otlichii ot elektromagnitnogo impulsa ,kotorij
zablokiruet ispol'zowanie GPS i Glonass
Werojatno neobxodimo ispol'zowat# dlja wsex kompleksow morskogo i ne morskogo bazirowanija awtonomnie sistemi
#################################################################################
tipa AIRS w kombinazii s polnoj astrokorrekziej
##################################
Zadacha tochnosti 10 metrow mozet bit' reschenna
10 millimetrow (zalet boegolowki w schachti gorazdo bolee sloznaja
Sowerschenstwowanie sistemi nawigazii mnogokratno testirowannix ss-19 ,ss-n-23/sineva
odna iz idej ,kotoruju awtor podderziwaet . Zabrasiwaemaja massa bolee 4 tonn i 2.8 tonni
yawno lutsche topol/bulava
|
|
|
добавил
milstar
5773 дня 20 часов 54 минуты назад
Известно, что бортовая система наведения первой межконтинентальной БРПЛ РСМ-40 включала азимутальную астрокоррекцию, которая обеспечивала требуемую точность стрельбы и при значительных ошибках НК в определении курса подводной лодки. На более совершенных ракетах (РСМ-50, РСМ-52 и РСМ-54) применялась полная астрокоррекция, учитывающая ошибки НК как в определении курса, так и места стреляющей субмарины. Ныне создатель данной системы и оптоэлектроники для космоса, авиации и ВМФ – ЦКБ «Геофизика» находится в состоянии банкротства.
#####################################
1. Milliarcsec = primerno 30 millimetrow mozno pogoworit' .(skazu s kem , esli wi sami ne dogadalis')
Odnako ot fundamental#nnix prinzipow ,daze wernix do realizacii ,w tom chisle i nalichii wsej kompletujuschej bazi
eto ....?
Situazija s opitnimi i odnowremenno wisokomotivirowannimi energichnimi kadrami (40 let) eto minimum DSP (dlja sluzebnogo pol#zowanija )
Awtor soderzanie DSP znat' ne mozet
2. Sitema s astrokorrekziej mozet primenjat'sja i dlja mobil'nnix kompleksow kak Z/D ,awto i AN-124
Nedostatok -otsutstwie polnoj awtonomnosti kak w AIRS
|
|
|
добавил
milstar
5773 дня 20 часов 55 минут назад
http://nuclear-weapons.nm.ru/delivery/usa/missiles/airs.htm
AIRS (усовершенствованная инерциальная опорная сфера) самая точная из разработанных сегодня инерциальных навигационных систем (ИНС), и, возможно, она ставит точку в долгом процессе непрерывного совершенствования технологии ИНС.
Эта сложная и дорогая ИНС третьего поколения, как характеризует ее д-р Чарльз Старк Дрейпер (Charles Stark Draper), ведущий специалист по разработке сверхточных инерциальных систем управления. Это означает дрейф ИНС менее чем на 1.5x10-5 градуса за час работы. Этот дрейф так мал, что вклад AIRS в КВО ракет Peacekeeper менее 1%, (т.е. даже идеальная система управления с нулевым дрейфом улучшит точность попадания этой ракеты лишь на несколько метров).
Столь высокая стабильность параметров требуется в основном не при полете по баллистической траектории, а только для сохранения ориентации системы наведения на земле в течении ракетной тревоги, без необходимости внешней опорной ориентации при помощи прецизионного гирокомпаса. Большинство МБР требуют внешней эталонной системы для сохранения синхронизации ИНС с внешним миром до старта. Обратная сторона такой экстремальной точности - огромная сложность и стоимость. AIRS состоит из 19 000 деталей. В 1989 году один акселерометр, используемый в AIRS (всего их там три), стоил 300 000 долларов и требовал полгода на сборку.
Очень мало приложений требуют одновременно такую точность управления и независимость от внешних референсных систем управления. Фактически, кроме стратегических межконтинентальных ракет, она не нужна нигде. Если исключить требование полной автономности, то чрезвычайно высокую точность можно получить и при гораздо меньшей цене и массе. Например, появившиеся спутниковые навигационные системы (GPS, GLONASS) позволяют иметь сантиметровый уровень точности в течении неограниченного периода времени с легким и недорогим приемником. Космические аппараты нуждаются в очень точной навигации, но достигают ее при внешнем управлении. Даже новые программы по системам наведения ядерного оружия показывают готовность пожертвовать автономностью ради стоимости и веса. Предложенная программа BIOS (система оптимизации бомбового удара), делающая бомбы B-61 корректируемыми, использует GPS взамен ИНС. Такая конкуренция со стороны систем внешнего позиционирования ведет к закату ИНС по изложенным выше причинам.
Особенности.
Самая оригинальная сторона в AIRS - она не содержит карданных подвесов. Смысл кардана состоит в том, что имея три оси вращения, подвешенная в нем платформа может свободно поворачиваться во всех направлениях (и таким образом, установленный на нем гироскоп будет сохранять свою изначально заданную ориентацию). AIRS содержит бериллиевую сферу, которая свободно плавает в жидком фторуглероде внутри внешней оболочки и потому вращается в любом направлении. Важность этого нововведения в том, что оно исключает стопор кардана (состояние, когда две из трех осей гироскопа выстраиваются на одну линию и делают невозможным трехмерное его вращение) и освобождает от ограничений на диапазон углов отклонения, присущих некоторым конструкциям рамок гироскопов.
Температура жидкости поддерживается с очень высокой точностью путем переноса тепла от нее через силовую оболочку к охлаждаемым фреоном теплообменникам. Положение сферы контролируется тремя гидродинамическими клапанами, управляемыми инерциальными датчиками в сфере. Как и в остальных инерциальных системах, в сфере помещены три акселерометра и гироскопа. Акселерометр называется SFIR (особый интегрирующий датчик силы), и использует такой же метод как и PIGA (маятниковой интегрирующий гироакселерометр) ракет Minuteman II. SFIR/PIGA работают, измеряя скорость прецессии (и, соответственно, прикладываемую силу) гироскопа перпендикулярно его оси вращения. Гироскоп подвешен на газостатических подшипниках.
Разработка.
AIRS была по большей части эволюционной технологией. Основные идеи измерительных устройств (акселерометров и гироскопов) являются прямыми потомками ИНС более ранних МБР, таких как Minuteman II. Эти технологии были разработаны за период в 30 лет лабораторией Чарльза Старка Дрейпера (бывшая Инструментальная лаборатория MIT).
Бескарданная плавающая сфера была задумана в Инструментальной лаборатории в конце 1950-х Филипом Боувичем (Philip Bowditch). Она была была развита в развертываемую систему Кеннетом Фертигом (Kenneth Fertig) под эгидой программы ВВС SABRE. В 1969 году программа по очень точной системе управления МБР была аннулирована, но возродилась как MPMS (система определения положения ракеты). Под этим названием она испытывалась в полете на Minuteman III в 1976 (как дополнение к "родной" ИНС Minuteman III NS-20 ). AIRS настолько точна, что ее можно было бы без труда использовать как эталон для оценки других ИНС.
Развертывание.
Ракеты Peacekeeper (MX) начали разрабатываться в феврале 1972. Военные требования для них предусматривали сильно возросшую точность, точность AIRS хорошо позиционировала ракету для нанесения удара. В мае 1975 AIRS перешла из лаборатории Дрейпера в Northrop для дальнейшей разработки. Там довели проект от ручной штучной лабораторной сборки до пригодного к массовому производству. Несмотря на годы работы, к июлю 1987 года Northrop Electronics Division успешно изготовил только небольшое число блоков ИНС. Ракеты MX начали накапливаться в шахтах без системы управления их полетом. Но к декабрю 1988 все 50 ракет MX получили блоки AIRS. Начиная с того времени, все их производство передано Autonetics Division, Rockwell International.
Между 1998 и 2002 годами, 625 новых модулей управления AIRS были закуплены и помещены в существующие ракеты Minuteman III, дав им точность, сравнимую с точностью Peacekeeper'а (КВО 110 м).
По материалам The High Energy Weapons Archive
|
|
|
Для того, чтобы оставить комментарий к этому материалу, вам необходимо авторизоваться или зарегистрироваться.
|
|
|
|
Архив Ленправды
Темы дня
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Дайджест СМИ Санкт-Петербурга
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
Дайджест федеральных СМИ
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
|